Linear Programming Problems

e Two common formulations of linear programming (LP) problems

are:
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Linear Programming Problems

e The standard LP problem is given as:

min z = ;-‘:

Xi
Subject to: Z?=1 ajjxj=b;, x; =20;i=12,..,m

1 GjXj

 Or, in matrix form as:

minz = ¢’ x, subjectto Ax=b, x>0
X

where 4 € R™";, x,c € R", b€ R™; rank(4) = m

e The standard LP problem has the following characteristics:
— It involves minimization of a scalar cost function.
— The variables can only take on non-negative values, i.e., x; = 0.
— The right hand side (rhs) is assumed to be non-negative, i.e., b; = 0.
— The constraints are assumed to be linearly independent, rank(4) = m.

— The problem is assumed to be well-formulated, i.e., min ¢’ x < co.
X



Formulation of the Standard LP Problem

* When encountered, exceptions to the standard LP problem
formulation are dealt as follows:

A maximization problem is changed to a minimization problem by
taking negative of the cost function, i.e.,

max ¢! x = min(—cx).
X X

Any constant terms in z can be dropped.

Any x; € R (unrestricted in sign) are replaced by x; = x;” — x;
where x;", x7 = 0.
The inequality constraints are converted to equality constraints by

the addition of slack variables (to LE constraint) or subtraction of
surplus variables (from GE constraint).

If any b; < 0, the constraint is first multiplied by —1, followed by
the introduction of slack or surplus variables.



Solution to the LP Problem

The LP problem is convex as the objective function and the
constraints are linear; therefor a global optimum exists

The feasible region for the LP problem is defined by:
S={x:Ax =b,x = 0}
The feasible region is a polytope (polygon in n dimensions)

Due to only equality constraints, the optimal solution lies at the
boundary of feasible region (one or more constraints must be active

at the optimum)



Basic LP Solutions

A basic solution x to the LP problem satisfies two conditions:
— XxisasolutiontoAx = b

— The columns of A corresponding to the nonzero components of x
are linearly independent

Since rank (4) = m, x has at the most m nonzero components.
Thus, a basic solution is obtained by choosing n — m variables as O

In terms of the canonical form, I ;)X (m) + @X(—m) = b’, a basic
solution is given as: Xy = b’
The total number of basic solutions is finite, and is given as:

(m) = mtis

A basic solution that is also feasible is a basic feasible solution (BFS)




The Simplex Method

e The simplex method iteratively solves the LP problem
 The steps in the Simplex methods are:
1. Initialize from a known BFS, with m non-zero values

2. Check optimality

3. Replace avariable in the basis with a previously nonbasic
variable, such that the objective function value decreases

4. Gotostep?2

e An optimum is reached when no neighboring BFS with a lower
objective function value can be found



The Simplex Method

e At any step we can partition the problem into basic and nonbasic
variables as: xT = [xp, xy], ¢’ = [c5,cy],A = [B, N], to write

min z = c5xp + Chxy,
X

Subjectto Bxg + Nxy = b, x5 =20, xy =0

 The current basic solution is given as: xzg = B~ b, xy = 0.

e The matrix B is called the basis matrix and its columns are the basis
vectors.



The Simplex Method

Consider the constraint: Bxg + Nx, = b, and assume that we
want to study the change in the cost function when x; € xy is
assigned a nonzero value

Accordingly, use x5 = B~1(b — Nxy) to express the cost as:
z=ctxg +chxy =ctB™b + (ck — cEB 1N)xy
or, z=y'b+ehxy =2+ ¢lxy
In the above
— yT = cLB™1is a vector of Simplex (Lagrange) multipliers; any
y; > 0 represents an active constraint
— 2 = yT'b represents the current optimal

— ¢&, = ¢, — YT N represent the reduced costs for nonbasic
variables; any ¢; < 0 represents the potential to reduce Z



Entering and Leaving Basic Variables

* A previously nonbasic variable with ¢, < 0 that is assigned a
nonzero value o, in order to reduce z is termed an entering basic
variable (EBV).

e The update to the current basic solution x5 by the introduction of
EBV is given as: xg = B‘l(b — Aqxq) =b— ﬁqxq, where 4,
represents the gth column of A that corresponds to the EBV.

* In order to maintain feasibility (xg = 0), the maximum allowable
o b . (b &
value of x, is given as: §, = ==~ = min{=+:4; , > 0¢. The
q q Apq i Aiq q
element 4, ; is termed as the pivot element.

* Assigning maximum value to x, results in one of the previously

basic variable taking on zero value; that variable is termed as
leaving basic variable (LBV).



The Simplex Algorithm

Initialize: find an initial BFS to start the algorithm; accordingly,
determine xp, x5, B, N, y' =cL5B™1, 2= yTh.
Optimality test: compute €y = cy —y ' N.I[fall & > 0, the
optimal has been reached; otherwise, select a variable Xq with
Cq < 0asEBV.

Ratio test: compute 4, = B~'A, associated with EBV, and
. b . (b; &
determine: §, = — = mijn {A—‘:Aiq > O}.
Apq i Aig ~
Update: assign x, « 0,4, Xp < b— /quq, Z « Z+ Cyxg; update
Xg, Xpn, B, N.



Tableau Implementation of the Simplex Algorithm

A tableauis an augmented matrix that represents the current BFS in
the form: I,,xg + B"1Nxy = b’

 Each row of the tableau represents a constraint equation and each
column represents a variable, with the columns associated with
basic variables identified by unit vectors.

e Additionally, the last row, termed as the cost function row, includes
the reduced costs and the current optimum.

e When an EBV and a pivot element /Tp,q has been identified, Gauss-
Jordan eliminations are used to reduce Aq to a unit vector.

e The tableau method implements the simplex algorithm by
iteratively computing the inverse of the basis (B) matrix.



Example

e Consider the LP problem:

maxz = 3xq + 2x,
X1,X2

Subject to: 2xy + x, < 12, 2x; +3x, <16; x; =20,x, =0
e Convert the problem to standard LP form as:

min z = —3x1 — ZXZ
X1,X2

Subject to: 2xy + x, + 54 =12, 2x; +3x, +5, = 16; x;1 = 0,x, =
O, S1 = 0, Sy = 0
e Construct the initial Tableau:

Basic X1 X, S1 So Rhs
S1 2 1 1 0 12
S 2 3 0 1 16
—Z -3 -2 0 0 0

EBV: x;, LBV: sq, pivot: (1,1)



Example: Simplex Iterations

Basic X4 X5 S1 S Rhs
S1 2 1 1 0 12
S5 2 3 0 1 16
—Z -3 -2 0 0 0
EBV: x;, LBV: sq, pivot: (1,1)
Basic X1 X, S1 So Rhs
X1 1 0.5 0.5 0 6
S5 0 2 -1 1 4
—Z 0 -0.5 1.5 0 18
EBV: x,, LBV: s,, pivot: (2,2)
Basic X1 X, S1 So Rhs
X1 1 0 0.75 -0.25 5
X5 0 1 -0.5 0.5 2
—Z 0 0 1.25 0.25 19

Optimal solution: x; = 5,x; = 2,2,y = —19



Two Phase Simplex Method

An initial BFS is not obvious for problems formulated with EQ and
GE type constraints (origin not included in the feasible region)

Add auxiliary variables X to all EQ and GE type constraints
Define an auxiliary problem to be solved Phase I:

min )i~ X;
Xi

Subjectto: Ax+X=b,x=>0,x=>0
An initial BFS for the auxiliary problem is givenas: X = b
Add an auxiliary objective row to the simplex tableau
Bring auxiliary variables into the basis
Proceed with simplex iterations using auxiliary cost function row

As the optimum value for the auxiliary objective is zero, Phase |
ends when auxiliary objective becomes zero



Example: Two Phase Simplex

e Consider the following LP problem:

max zZ = 3x1 + ZXZ
X1,X2

Subject to: 3x; + 2x, = 12, 2x4 +3x, <16,x; =2 0,x, =0
e Convert to standard LP form:

min z = —3x; — 2X,
X1,X2

Subject to: 3x; + 2x, — sy =12, 2x4 + 3x, + s, = 16;
X1,X2,51,S, = 0
e Define the auxiliary problem:

min z; = a4
X1,X2

Subject to: 3xy + 2x, — 51 + a4y =12, 2x; + 3x, + 5, = 16;
X1,X2,51,82,a1 = 0



Example: Phase |

Basic X1 X, S1 So a, Rhs
3 2 -1 0 1 12

S 2 3 0 1 0 16
—Z -3 -2 0 0 0 0

—Z, 0 0 0 0 1 0

Basic X4 X S1 S a, Rhs
S1 3 2 -1 0 1 12
S5 2 3 0 1 0 16
—Z -3 -2 0 0 0 0

—Z, -3 -2 1 0 0 -12

EBV: x4, LBV: 54, pivot: (1,1)

Basic X1 X, S1 So a, Rhs
Xq 1 2/3 -1/3 0 1/3 4
S 0 5/3 2/3 1 -213 8
—Z 0 0 -1 0 1 12
—Z, 0 0 0 0 1 0




Example: Phase |l

Basic X4 X, S1 Sy Rhs
X4 1 2/3 -1/3 0 4
S5 0 5/3 2/3 1 8
—Z 0 0 -1 0 12

EBV: s, LBV: s,, pivot: (2,3)

Basic X1 Xy S1 S5 Rhs
X4 1 3/2 0 1/2 8
S1 0 52 1 3/2 12
—Z 0 52 0 3/2 24

x; =8, x5 =0, z"=—-24



Simplex Algorithm: Abnormal Terminations

* If the reduced cost y; for a nonbasic variable in the final tableau is
zero, then there are possibly multiple optimum solutions with equal
cost function value. This happens when cost function contours
(level curves) are parallel to one of the constraint boundaries.

e |f the reduced cost is negative but the pivot step cannot be
completed due to all coefficients in the LBV column being negative,
it reveals a situation where the cost function is unbounded below.

e |f, at some point during Simplex iterations, a basic variable attains a
zero value, it is called degenerate variable and the current BFS is
termed as degenerate solution. The degenerate row hence forth
becomes the pivot row with no further improvement in the
objective function.



Post Optimality Analysis

e Post optimality analysis explores the effects of parametric changes
on the optimal solution.

 There are five basic parametric changes affecting the LP solution:

Changes in cost function coefficients, c;, which affect the level
curves of the cost function.

Changes in resource limitations, b;, which affect the set of active
constraints.

Changes in constraint coefficients, a;;, which affect the active
constraint gradients.

The effect of including additional constraints
The effect of including additional variables



Postoptimality Analysis

The current cost function value in the Simplex algorithm is given as:
z=y'b+ ¢ixy, where yT =cLB tand ¢}, = c}, —y'N
The cost function is expanded as: z = ),; y;b; + Zj Cix;,

where ¢; = ¢j — yT6NJ-, and N; represents the jth column of N.
Then, taking the differentials with respect to b;, ¢;, we obtain:
0z = Ziyi5bi + Z] 56]X], 56] = 5(,'] — yTSN]

The above formulation may be used to analyze the effects of
changes to b;, ¢j,and Nj on z.



Recovery of the Lagrange Multipliers

e The Lagrange multipliers can be recovered from the final tableau as
follows:
— For LE constraint, the Lagrange multiplier, y; = 0, equals the
reduced cost coefficient in the slack variable column.
— For GE/EQ constraint, the Lagrange multiplier equals the reduced
cost coefficient in the artificial variable column; where y; < 0 for
GE type, and y; is unrestricted in sign for EQ type constraint.



Final Tableau Properties

Consider the standard LP formulation of a maximization problem:

min z = —c’x
X

Subjectto: Ax+Is=b, x>0
The initial and tableaus for the problem are given as:

Basic x S Rhs Basic  x S Rhs
S A | b XB A S b
—7 —CT 0 0 —7 ET yT 7*
_ s 0
* These tableaus are related as: [Tab]fjq] = ¥ o1 [Tablinitial

Oor A=SA, b=Sb, ¢ =y"A—c", z2=9y"b

e Thus,only 4,b,c’,y", S need to be stored to recover the final tableau

when the algorithm terminates



Postoptimality Analysis

e Changes to the resource constraints (rhs). A change in b; has the
effect of moving the associated constraint boundary. Then,

— If the constraint is currently active (y; > 0), the change will affect
the current basic solution, xg = b, as well as Zopt- If the new xp is
feasible, then z,,; = yT'b is the new optimum value. If the new xg
is infeasible, then dual Simplex steps may be used to restore
feasibility.

— If the constraint is currently non-active (y; = 0), then z,,; and xp
are not affected.



Postoptimality Analysis

* Changes to the objective function coefficients. Changes to ¢; affect
the level curves of z. Then,

— |If Cj € Cp, then since the new 6]- #+ 0, Gauss-Jordan eliminations
are needed to return x; to the basis. If optimality is lost in the
process (any ¢; < 0), further Simplex steps will be needed to
restore optimality. If optimality is not affected, then z,,,; = y'bis
the new optimum.

— If ¢; € ¢y, though it does not affect z, still ¢; needs to be
recomputed and checked for optimality.



Postoptimality Analysis

 Changes to the coefficient matrix. Changes to the coefficient
matrix affect the constraint boundaries. For a change in 4; (jth

column of A4),

— If A; € B, then Gauss-Jordan eliminations are needed to reduce A;
to a unit vector; then 6]- needs to be recomputed and checked for
optimality.

— |If A]- € N, then the reduced cost c“‘]- needs to be recomputed and
checked for optimality.



Postoptimality Analysis

* Adding Variables to the Problem. If we add a new variable x,,,; to
the problem, then

— The cost function is updated as: z = ¢"x + ¢, . 1 X1 1.
— In addition, a new column A4,,, 1 is added to the constraint matrix.

— The associated reduced cost is computed as: ¢,1 — ¥' 4,,+1. Then,
if this cost is positive, optimality is maintained; otherwise, further
Simplex iterations are needed to recover optimality.



Postoptimality Analysis

* Adding inequality Constraints. Adding a constraint adds a row and
the associated slack/surplus variable adds a column to the tableau.
In this case, we need to check if adding a column to the basis
affects the current optimum. Define an augmented B matrix as:

~1
B = [‘Z; 2] ,where B~1 = agB_l (1)], and write the
augmented final tableau as:
Basic Xp Xy Rhs
Xp I B~IN B~ b
Xpt1 I atB™'N aLiB 'b+ b,
—z 0 ch —y'N —y'b

e Then,ifakB~'b + b,,,; > 0, optimality is maintained. If not, we
choose this row as the pivot row and apply dual Simplex steps to
recover optimality.



Ranging the RHS Parameters

Ranges for permissible changes to the rhs parameters that maintain
feasibility of the optimum solution are computed as follows: From
the final tableau, b = Sb. Assume that the rhs is changedto b + A,
where AT = [§,,5,, ..., §,,,]. Then, the updated basic solution is
given as: S(b + A), where, for feasibility, S(b + A) = 0 is desired.
By inspecting the values in the new xg, we can compute the
allowable parameter ranges A that maintains feasibility.



Ranging the Cost Function Coefficients

Ranges for permissible changes to the cost function coefficients
that maintain feasibility of the optimum solution are computed as
follows: Assume that ¢ is changed to ¢! + A, where AT =
161,65, ..., &,,]. Then, the updated reduced costs are given as:

¢’ — A. This would affect the basis vectors. Gauss-Jordan
eliminations are then used to regain the basis. The resulting rhs
coefficients are checked for feasibility. By inspecting the values in
the new xp, we can compute the allowable parameter ranges A
that maintains feasibility.



Example

 Consider a standard LP problem:
min z = —3x; — 2x,
X1,X2

Subject to: 2x; + x; + 51 = 12, 2x; + 3%, + 5, = 16; x5, 55 =0

e The initial and final tableaus for the problem are given as:

Basic x; X, S1 s,  Rhs Basic X4 X, S1 s, Rhs
S1 2 1 1 0 12 Xq 1 0 0.75 -0.25 5
S5 2 3 0 1 16 Xy 0 1 -05 05 2
—z -3 -2 0 0 0 —Zz 0 0 1.25 025 19

« Then, s=[%7> T02°] 3T =[125 0.25,], b= B] yTh = 19.

=05 05
. — 0.256
* ForachangeA = [gﬂ toRHS, S(b + A) = 52+_O(;7.§§1 + 8;522] >0

* Byinspection, we determine: —6.67 <§, <4; -4<6, <20



Example: Postoptimality Analysis

A vegetable farmer has the choice to grow three vegetables:
tomatoes, green peppers, or cucumbers on his 200 acre farm. The
man-days/per acre needed for growing the vegetables are 6,7 and
5, respectively. A total of 500 man-hours are available. The yield/
acre for the vegetables are in the ratios: 4.5:3.6:4.0. Determine the
optimum crop combination that maximizes total yield.

 The initial and the final tableaus for the problem are given as:

Basic X1 X9 X3 S1 So Rhs
S1 1 1 1 1 0 200
So 6 7 5 0 1 500
—Z -4.5 -3.6 -4 0 0 0

Basic X1 X9 X3 S1 So Rhs
S1 -0.2 -0.4 0 1 -0.2 100
X3 1.2 1.4 1 0 0.2 100
—Z 0.3 2 0 0 0.8 400




Example: Postoptimality Analysis

e From the final tableau, the optimum crop combination is given as:
x; = 0,x; =0,x3 = 100, with z* = 400. The simplex multipliers
for the constraints are: yI = [0, 0.8], with z* = yI'b = 400.

e Using the information in the final tableau, we answer the following:

— If an additional 50 acres are added, what is the expected change in
yield? The answer is found from: z* = yT (b + A) for A= [50,0]7,
with z* = 400, i.e., there is no expected change in yield. Thus, the
land area constraint is not binding in the optimum solution.

— If an additional 50 man-days are added, what is the expected
change in yield? The answer is found from: z* = y' (b + A) for
A= [0,50]7, with z* = 440, i.e., the yield increases by 40 units.
Thus, the man-days constraint is binding in the optimum solution.



Postoptimality analysis

— If the yield/acre for tomatoes increases by 10%, how is the optimum
affected? The answer is found by re-computing the reduced costs as:
¢! = yTA— ¢ =[-0.15,2,0]. Since a reduced cost is now negative,
additional Simplex steps are needed to regain optimality. This is done and
the new optimum is: x; = 83.33,x; = 0,x3 = 0 with z* = 412.5.

— If the yield/acre for cucumbers drops by 10%, how is the optimum be
affected? The answer is found by re-computing the reduced costs as:
¢’ =yTA — c¢" =[0.3,2,0.4]. The reduced costs are non-negative, but x5
is no more a basic variable. Regaining the basis results in reduced cost for
X1 becoming negative. Additional Simplex steps to regain optimality reveal
the new optimum: x; = 83.33,x, = 0,x3 = 0 with z* = 375.

— If the yield/acre for green peppers increases to 5/acre, how is the
optimum affected? The answer is found by re-computing the reduced
cost: &, = yTA, — ¢, = 0.4. Since x, was non-basic and the revised
reduced cost is non-negative, there is no change in the optimum solution.



Example: Postoptimality Analysis

e Consider the LP problem:

max z = 4x; + 6x, + 10x3 + 9x,
X1—X4

Subject to: 3x; + 4x, + 8x3 + 6x, < 400, 6x1 + 2x, + 5x5 +

8x, < 400; x; = 0,j=1—4

e The final tableau for the problem is given as:

Basic X1 X2 X3 X4 S1 S Rhs
X1 0.75 1 2 15 0.25 0 100
55 45 0 1 5 05 1 200
—Z 0.5 0 2 0 1.5 0 600

0.25 071 & 100
+ Then,§ = | b = ,
—0.5 1 200



Example

(a) How many units of P1, P2, P3 and P4 should be produced in order to
maximize profits?

e (b) Assume that 20 units of P3 have been produced by mistake. What is
the resulting decrease in profit?

* (c) In what range can the profit margin per unit of P1 vary without
changing the optimal basis?

 (d) In what range can the profit margin per unit of P2 vary without
changing the optimal basis?

 (e) What is the marginal value of increasing the production capacity of
Workshop 17

e (f) In what range can the capacity of Workshop 1 vary without changing
the optimal basis?

* (g) Management is considering the production of a new product P5 that
would require 2 hours in Workshop 1 and ten hours in Workshop 2. What
is the minimum profit margin needed on this new product to make it
worth producing?



Example

e (a)x; =0, x, =100,x3=0,x, =0

e (b)6f = —C3x3 = —40

e (c)Forcy =44+ 6cy,64=05—-6c; =20;8c; <05

e (d)Forc, + 8¢y, &, = —6cy; T = [1.5+ 8¢y, 0]; €7 = y'A —
c' >0

* (e)y; =15

- ms(b+[°0]) = 120000+—'.25556bbf] =0

e (g) Az = llzol;yTAs —c: <0



Duality in LP Problems

Associated with every LP problem, termed primal, is a dual problem
modeled with dual variables

The dual problem has one variable for each constraint in the primal
and one constraint for each variable in the primal.

The dual variables are the cost of resources in the primal problem.

If the primal problem is to maximize objective with LE constraints,
the dual problem is to minimize dual objective with GE constraints.

The optimal solutions for the primal and dual problems are equal.

The computational difficulty of an LP problem is approximately
proportional to m?n; therefore, dual problem may be
computationally easier to solve.



Duality in LP Problems

e The primal and dual LP problems are defined as:

(P) max z = c'x, subjecttoAx <b, x>0
X

(D) min w = y'h, subjecttoy’A>cT, y=>0
y

Where x € R" and y € R™ denotes primal and dual variables,
respectively.

* |nthe case of standard LP problem, the dual is given as:

(P) min z = ¢Tx, subjectto Ax=b,x>0
X

(D) max w = y'h, subjectto yTA < cT
y

Where at optimum point: Wopt = y'b=y'Ax = c'x = Zopt



Example: Diet Problem

e Diet problem (var: qty of eggs, cereals, and bread)
Min = 100*A + 100*B + 50*C;
3*A +4*B + 5*C >=10; (calories)
5*A + 4*B + 2*C >=10; (protein)
A + B+ .5*C <= 2.5; (budget)
e Dual problem (var: cost of calories, cost of protein, budget cost)
Max = 10*X + 10*Y - 2.5*%Z;
3*X +5*Y-1*72<=100;
4*X + 4*Y - 1*7 <=100;
5*X + 2*Y - .5*Z <= 50;



Weak Duality

e Assume that the primal and dual LP problems are defined as:
(P) max z = ¢’'x, subjecttoAx < b, x>0
X
(D) min w = y'b, subjecttoy’™A>cT, y>0
y
e Weak Duality. Let x denote a feasible solution to (P) and y denote a
feasible solution to (D), then,
y'b >y 'Ax > c'x,ie., w(y) = z(x),
e The difference, bTy — c’'x, is referred to as the duality gap.

e Further, if c'x = bTy, then x is an optimal solution to (P), and y an
optimal solution to (D).

e If the primal (dual) problem is unbounded, then the dual (primal)
problem is infeasible (i.e., the feasible region is empty)



Strong Duality

Strong Duality. The primal and dual optimum solutions are equal,

l.e.,

T

— wTh — AT AN — _
Wt =Y b =Y Ax =¢'X = 2y,

Further, if x is the optimal solution to (P), then y! = cEB_1 is the
optimal solution to (D), which can be seen from:

w=y"b=ctB 'b=clxg=c"x =2z

The optimality of (P) implies the feasibility of (D), and vice versa. In
particular, x = 0 implies primal feasibility and dual optimality; and,
c=c— ATy > 0 implies primal optimality and dual feasibility.



Complementary Slackness

e At the optimal point, we have: x'¢ = xTATy, implying:
x"(c—A"y) = ¥ xi(c— ATy)j =0
e Thus, if the jth primal variable is basic, i.e., Xj > 0, then the jth
dual constraint is binding, i.e., (ATy)j = ¢;; and, if the jth primal
variable is non-basic, i.e., xj =0, then the jth dual constraint is

.. ) T
non-binding, i.e., (A y)j < ¢j.

* Note that primal optimality (¢ = 0) corresponds to dual feasibility

(yTA > CT), and primal feasibility (x = 0) corresponds to dual
optimality.



Dual Simplex Method

 The dual simplex algorithm iterates outsides of the feasible region:
it initializes with and moves through the dual feasible (primal
infeasible) solutions. Thus, the dual simplex method provides a
convenient alternative to the two-phase simplex method in the
event the optimization problem has no obvious feasible solution

— The points generated during dual simplex iterations are primal
infeasible as some basic variables have negative values.

— The solutions are always optimal in the sense that the reduced cost
coefficients for nonbasic variables are non-negative.

— An optimal is reached when a feasible solution with non-negative
values for the basic variables has been found.



Dual Simplex Algorithm

Subtract the surplus variables from GE constraints to convert them
to equalities; then, multiply those constraints by —1.

Enter the constraints and the cost function coefficients in a tableau,
noting that the initial basic solution is infeasible.

At each iteration, the pivot element in the dual simplex method is
determined as follows:
— A pivot row Ag is selected as the row that has the basic variable
with most negative value.
— The ratio test to select the pivot column is conducted as:

. Cj > O'Aq,j < 0}

€j

min {
l

q,j
The dual simplex algorithm terminates when the rhs has become
non-negative.



Example: dual simplex method

e Consider the primal and dual problems:

e (P) maxz = 3xq{ + 2x,
X1,X2

Subjectto: 2x; + x, <12, 2x; +3x, <16; x; =20,x, =0

* (D) minw =12y + 16y,
V1Yo
Subjectto: 2y, + 2y, =23, y, +3y, =22y, =20,y,=20
 We subtract surplus variables from the GE constraints and multiply
them with —1 before entering them in the initial tableau.



Example: dual simplex method

Basic Y1 Y2 S1 Sy Rhs
S1 -2 -2 1 0 -3
S5 -1 -3 0 1 -2
—w 12 16 0 0 0
EBV: y,, LBV: s, pivot: (1,1)
Basic Y1 Y2 S1 Sy rhs
Y1 1 1 -1/2 0 3/2
S 0 -2 -1/2 1 -1/2
—w 0 4 6 0 -18
LBV: s, EBV: y,, pivot: (2,2)
Basic Y1 Y2 S1 Sy Rhs
Y1 1 0 -3/4 1/2 5/4
Y2 0 1 1/4 -1/2 Ya
—w 0 0 5 2 -19

y; = 1.25,y; = 0.25,wy,, = 19



Example: dual simplex method

 Note the following in the final tableau:

— The optimal value of the objective function for (D) is the same as
the optimal value for (P).

— The optimal values for the basic variables for (P) appear as reduced
costs associated with non-basic variables in (D)



Non Simplex Methods for LP Problems

e The non-simplex methods to solve LP problems include the interior-
point methods that iterate through the interior of the feasible

region, and attempt to decrease the duality gap between the primal
and dual feasible solutions.

e These methods have good theoretical efficiency and practical
performance that is comparable with the simplex methods.



Optimality (KKT) Conditions for LP Problems

Consider the LP problem:

max z = c'x, subjecttoAx < b, x>0
X

The Lagrangian function is formed as:
Lx,uv)=—"cx—u'x+v'(Ax — b + s)

The KKT conditions are:
— Feasibility: Ax —b+s=0
— Optimality: V,.L(x,u,v) =ATv—c—u=0
— Complementarity: u'x +v's =0
— Non-negativity: x=0, s=20, u=20, v=0



Dual LP Problem

e Using optimality conditions, the Lagrangian function is written as:
L(x*,u,v) =v'(=b) = (V)

e Define the dual LP problem:

max ®(v) = —b'v
v=20



Duality Theorem

 The following are equivalent:
— Xx* together with (u*, v*) solves the primal problem.
— The Lagrangian function L(x, u, v) has a saddle point at
(x*,u*,v"),ie, L(x*,u,v) < L(x*,u*,v") < L(x,u*,v")

— (x*,u*,v") solves the dual problem: max L(x*, u, v).
u=0v

Further, the two extrema are equal, i.e., L(x*, u*, v*) = f(x")



Optimality Conditions for QP Problems

Consider the QP problem:

min q(x) = %xTQx + ¢Tx, Subjectto:Ax>b, x>0

The Lagrangian function is given as:

1
L(x,u,v) = ExTQx +cfx—u'x—vi(Ax — b —5)

The corresponding KKT conditions are:
— Feasibility: Ax—s=>b
— Optimality: Qx +c—u—ATv =0
— Complementarity: u’x+v's=0
— Non-negativity: x =20, s=0, u=0, v=0



Dual QP Problem
e The dual function for the QP problem is given as:
® (V) = min L(x,v) = —%(ATv + C)TQ_l(ATv +c)—v'h
X
* |nterms of dual function, the dual QP problem is defined as:

T T 1T
max d(w)=—(Av+c)Q  (Av+c)—v'b
e The solution to the dual problem is given as:
v=—(4Q'a") ' (ATQ 'c + b)

x=Q'AT(4Q1a") " (ATQ 'c+b) Q' c



Example: Finite Element Analysis

Consider the FEA problem: mlnH TKq q'f

Assume that g7 = [q4, q5], and q, < 1.2 is desired

5 _
The stiffness matrix is given as: K = £[ 2 1] —

let, Q =K, f=1[P, 0]", c=—f, A=[0 1], b=12; then,
AQ7 AT =6x107°, cTQ AT =-1.8, c"Q ¢ =1.08x 107>
The dual QP problem is defined as:

max ®(v) = —3 X 107°v? — 0.6v — 1.08 x 107>

v=>0

The optimum solution is givenas: v =1 X 10%; then q; = 1.5mm,
g, =1.2mm, [[ =129 Nm



