Credit Hours




MSE 711

Aerospace Materials


MSE 621

Structure and Properties of Materials


MSE 622

Thermodynamics of Materials





MSE 631

Advanced Characterization Techniques


CSE 601

Research Methodology



Elective 1




Elective 2



Elective 3






Mandatory Courses 

Aerospace Materials (MSE 711)
A brief review of the fundamentals of materials and their types. Physical, mechanical and environmental properties. Review of phase diagrams. Structure of atmosphere, its major regions with their temperature profiles. Characteristics of the space environments. Requirements for aerospace materials. Evaporation effects on materials in space. Lightweight materials and their alloys for aerospace applications. High strength steels, stainless steels, super alloys and composites. Structure-property relations. Materials for pressure vessels and cryogenic applications. Extremely high temperature materials. Ablatives and thermal barrier coatings. Adhesives, lubricants, elastomers and advanced polymeric, ceramic and metal matrix composites for aerospace applications. Metallurgical assessment of space craft parts and materials. Effects of radiations on the performance of materials. Failure analysis and selection of materials.

Structure and Properties of Materials (MSE 621)
Structure of materials. Imperfections in structures. Dislocations and strengthening mechanisms. Study of macro, micro, nano and atomic structures. Phase transformation in metals. Principles of structure-property relationships of materials; control through processing. Alloy theory, phase diagrams and microstructural development; application to ferrous and nonferrous alloys. Structures and properties in other materials. Role of structure in cyclic loading and high temperature applications. Role of structure in interaction of materials with environment. Role of structure in physical properties of materials. 

Thermodynamics of Materials (MSE 622)
Thermodynamics review. Laws of thermodynamics; property relation; free energies; Maxwell relations; chemical potential; thermodynamic activity. Statistical thermodynamics. Defects in solids, Surfaces and interfaces. Solidification, metallic glasses, diffusion, atomic mechanisms of diffusion, high-diffusivity paths; diffusion in multiphase binary systems; diffusional transformations in solids, diffusionless transformations.

Advanced Characterization Techniques (MSE 631)
Modern methods of materials characterization. X-ray techniques, X-ray diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Optical Microscopy and Spectroscopy, Ellipsometry, Fourier Transform Infrared Spectroscopy (FTIR), Raman spectroscopy, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Scanning Probe Microscopy (SPM), Particle Beam Analysis, Secondary Ion Mass Spectroscopy (SIMS), Rutherford Backscattering Spectroscopy (RBS)

Research Methodology (CSE 601)
Research design and planning. Research methods and tools. Data analaysis and interpretation. Research proposal. Literature review and report writing. Important steps in writing a technical paper. Thesis writing. Plagairism.

Elective Courses

Metals and Alloys (MSE 612)
Different methods of classification of steels, various phases and reactions in steel: ferrite reaction, bainite reaction, martensite formation. Alloy steels; effects of alloying elements. Stainless steels: ferritic, martensitic, austenitic, precipitation-hardening. HSLA steels, maraging steels, dual-phase steels, tool steels. Corrosion of stainless steels. Aluminum alloys. Magnesium alloys. Titanium alloys. Nickel-base superalloys. Nickel-iron-base superalloys. Cobalt-base superalloys. 

Ceramics and Glasses (MSE 613)
Bonding in ceramics; structure of ceramics; effect of chemical forces on physical properties; thermodynamics and kinetic considerations; defects in ceramics; diffusion and electrical conductivity; phase equilibria; formation, structure and properties of glasses, sintering and mechanical properties. Fracture, creep and fatigue. Thermal properties; dielectric properties; magnetic and nonlinear dielectric properties, optical properties.

Polymer Engineering (MSE 614)
Control and design of structure and molecular weight. Determination of molecular weight. Step growth process. Chain polymerization. Copolymerization. Stereoregularity of polymers, Polymerization processes, Morphology and Properties. Polymer testing. Polymer structure and stability. Hydrogels and dendrimers.

Composites (MSE 615)
Historical background of composites; classification and general properties. Role of the constituent materials in composite manufacturing, i.e. matrices and reinforcements; their types, production and properties. Polymeric matrix composites (PMCs). Metal matrix composites (MMCs). Ceramic matrix composites (CMCs). General manufacturing techniques of PMCs, MMCs and CMCs and their principles. Special purpose composites. Fiber-matrix Interface and interphase, and their role in tailoring the properties of composites. Interface mechanics and toughness. Design and analysis of composites. Elastic, thermal and physical properties. Thermal stresses in composites. Applications of composites. Joining techniques for composites. Machining of composites. Special structures in composite manufacturing; light weight structural cores; honeycomb cores, foams. Hybrid composites. The emerging field of nanocomposites. Composite materials as surface coatings. Testing of composites: constituent material testing, testing of lamina and laminate. Mechanical testing of composites. Full-scale structural testing. Non-destructive testing of composites. Failure analysis of composites. Recycling and disposal of composites.

Preform Technology for Composites (MSE 745)
Introduction to composites reinforcements, One-dimensional preforms, Two-dimensional preforms, Random fibre preforms, Preforms based on uni-directional layers, Woven reinforcements, braided reinforcements, Knittted reinforcements, Solid three-dimensional preforms, Sandwich preforms, Preform architecture and mechanical behaviour of reinforcements/preforms, General approach to modeling of mechanical properties of reinforced composites, Representative volume element (unit cell) of composites, description of the unit cell geometry as a starting point for prediction of mechanical properties

Materials for Solar Energy (MSE 642)
The energy problem: causes, scope and scale. Solar Cells. Solar spectrum. Basic semiconductor physics: electron and hole energy bands; p-n junctions; photovoltaic effect, solar cell operation and characteristics; fill factor, efficiency; materials issues in solar cells; emerging solar cell technology; photovoltaic systems; grid tied versus battery backup; assessing energy resources.

Materials for Energy and Environment (MSE 643)
Environment catastrophes; sustainability, timescales, length-scales and units. Energy. Solar energy. Energy balance of the earth and the greenhouse effect. The earth system. Global warming; steam engines; electric engines; combustion engines and the electric car; nuclear energy; fusion and nuclear fuels; biomass and biofuels; consumption; thermal energy and heating; hydrogen and energy storage; energy and food; energy and water; geothermal energy; tide and wave energy; ozone layer.

Mechanical Behaviour of Materials (MSE 731)
Review of types of materials; elastic, linear elastic and visco-elastic materials. Stresses/strains, elastic and plastic deformation. Plastic deformation of a single and polycrystalline materials; slip and twinning. Tensile, compression, torsion, bend, impact and fracture toughness testing. Hall-Petch relation, spectrum of strain rate and its effect on the flow properties of materials. Strain hardening, strain rate sensitivity coefficients, anisotropy and R-value determination. Defects and imperfections in a single and polycrystalline materials; dislocations and their interactions. Plane stress and plane strain conditions; stress intensity factor, failure and fracture modes. Griffith and Orowan theory of fracture. Fatigue, creep and stress rupture. Nobaroo-Herring and Coble creep. Super-plasticity, radiation damage and embrittlement.

Electronic and Magnetic Properties of Materials (MSE 724)
Semiconductors; binary and tertiary semiconductor materials; single crystal growth techniques; doping profiles; VLSI technology; magnetic moment; classification of magnetic materials; magnetization curves; domain theory; soft and hard magnetic materials; magnetic materials processing; cast and sintered magnets; magnetostriction; metallic and ceramic magnets.

Processing of Materials (MSE 842)
Introduction to materials processing science with emphasis on heat transfer, chemical diffusion and fluid flow. Synthesis and production of materials with engineered microstructures for desired properties. High temperature, aqueous, and electrochemical processing; thermal and mechanical processing of metals and alloys; casting and solidification; diffusion, microstructural evolution, and phase transformations; modification and processing of surfaces and interfaces; deposition of thin films; solid state shape forming; powder consolidation; joining of materials.

Nanotechnology (MSE 712)
Introduction. Moore’s Law. Richard Feynman prediction. Size dependent properties at nanoscale. Molecular nanotechnology, Top-down and bottom-up approach; size dependence on properties; materials and processes; silicon technology; semiconductor grade Silicon; silicon single crystal growth and wafer production; photolithography; Soft-lithograhy; clean room; impact of nanotechnology; impact of nanotechnology on information technology, materials and manufacturing, health and medicine, energy, environment, transportation, security and space exploration. Quantum mechanics and nanotechnology. Thin film technology. Bio-Inspired nanotechnology. Impact of nanomaterials. Ethics and dangers of Nanotechnology.

Nano-Materials Engineering (MSE 744)
Synthesis and characterization of nanoparticles, nanocomposites and other materials with nanoscale features. Nanofabrication techniques. Zero-dimensional nanoparticles. One-dimensional nanostructures e.g. nanotubes, nanorods, nanowires and nanofibers. Two dimensional thin films. Design and properties of devices based on nanotechnology. Importance of nanostructured materials. Structure-property-processing relationship in nanomaterials and uses in electronics, photonics, magnetic applications.

Thin Film Technology (MSE 641)
Review of vacuum science and technology. Methods of preparation of thin films: electrolytic deposition; cathodic and anodic films, physical vapor deposition. The physics and chemistry of thermal evaporation. Film thicknesses; uniformity and purity, Evaporation hardware and techniques, Glow discharges and Plasmas; sputtering, sputtering processes; laser ablation hybrid and modified PVD processes; chemical vapor deposition: reaction types, thermodynamics of CVD, gas transport, growth kinetics, CVD processes and system. Growth and structure of films; atomistic nucleation processes; post-nulceation growth; film structures; structural aspects of epitaxial films; lattice misfit and imperfection in epitaxial films; Epitaxial Film growth and characterization; amorphous thin films.

Electron Microscopy (MSE 632)
Basic principles of imaging and diffraction, basic principles of electron beam interactions and electron microscopy; lenses and defects; radiation damage; Instrument maintenance; sample preparation and processing; STEM imaging, environmental SEM, elemental analysis.

Spectroscopic Methods (MSE 631)
Atomic absorption spectroscopy, UV-VIS spectroscopy, mass spectroscopy, Infrared and Raman spectroscopy, nuclear magnetic resonance spectroscopy, photoelectron and Auger electron spectroscopy, XPS.

Extraction of Materials (MSE 841)
Thermochemistry, chemical Equilibrium, melts and solutions, reaction kinetics, reactor design, phase Separation, fuel and ore preparation, reduction of metal oxides, smelting, refining processes, rare and reactive Metals, ferroalloys, hydrometallurgy, electrometallurgy, enthalpies of formation at 25C, enthalpy increments above 25C, standard Gibbs energies of formation and evaporation.

Electrochemistry and Corrosion (MSE 625)
Electrochemical Concept of Corrosion, Faradaic and Non-Faradaic Processes, Electrical Double Layer, Corrosion Cells, Corrosion Processes, Corrosion circuit, Cathodic and Anodic Reactions, Formation of Solid Products and their importance. Electrochemical Thermodynamics and Kinetics including charge transfer, polarization and mixed electrodes, Interface Potential Difference and Half-Cell, Nernst-Equation, Pourbaix Diagrams. Types of corrosion and their mechanisms, Galvanic Coupling, Corrosion of Active-Passive Metals and Alloys, Anodic Polarization and Passivity, Influence of Environmental Variables. Corrosion Rate Measurements, Tafel Analysis, Polarization Resistance, Electrochemical Impedance Spectroscopy, Cyclic Polarization Scans. Corrosion of welded structures and Micro-Biological Corrosion with case studies.

Fracture Mechanics (MSE 831)
Fundamental concepts of fracture mechanics and their applications, concepts of elastic-plastic fracture mechanics, dynamic and time-dependent fracture aspects, fracture mechanisms in metals, fracture toughness testing of metals, fatigue crack propagation, environmentally assisted cracking in metals and computational fracture mechanics.

Fractography and Fracture Analysis (MSE 832)

Engineering aspects of fracture and failure analysis, mechanical and metallurgical causes of failure, failure modes, characterization of fractured surface, macroscopic and microscopic features of fracture, fatigue, creep and corrosion assisted / induced failures, fractography, selected case histories and failure prevention methods.

Semiconductors (MSE 713)
Energy band and carrier concentration in thermal equilibrium, carrier transport phenomenon, semiconductor devices: PH junction, Bipolar transistor and related devices, MOSFET and related devices, MESFET and related devices, Microwave diodes, quantum-effect and hot-electron devices, photonic devices

Solid State Physics (MSE 623)
Crystal vibrations, thermal properties, free electron Fermi gas, energy bands, Fermi surface and metals, superconductivity, diamagnetic and paramagnetism, ferromagnetism and antiferromagnetism, Magnetic resonances, Plasmon’s, Polaritons and Polarons, Optical Processes and Excitons, Dielectrics and Ferroelectrics, Surface and Interface Physics, Non crystalline solids, point defects, Dislocations, alloys 

Advanced Engineering Mathematics (MAT 715)
Vector Calculus, Coordinate system transformation, Power series solution, Special functions, Bessel functions, Legendre polynomials, Laplace and inverse transforms, Solution of linear differential equations by the Laplace transform method, Introduction to PDE’s, Functions of many variables and their geometries

Finite Element Methods (AAE 732)
Introduction to Finite Element Methods (FEM), mathematics preliminaries, truss analysis, variational and weighted residual formulations, general approach to structural analysis, efficient representation of computational meshes, efficient computation of the element tensor (element stiffness matrix), tensor representation of multilinear forms, Stress analysis for one and two dimensional problems of structures, beam analysis, and ANSYS software for FEA analysis

1, Islamabad Highway,
Islamabad 44000
T: +92-51-9075100
F: +92-51-9273310 E:
Send Feedback | Privacy & Security | Copyright | Contact Us
© 2017 Institute of Space Technology . All rights reserved.
Website Last Updated: 22-Mar-2017
This Page Last Updated: 22-Mar-2017